593 research outputs found

    Fully Adaptive Gaussian Mixture Metropolis-Hastings Algorithm

    Get PDF
    Markov Chain Monte Carlo methods are widely used in signal processing and communications for statistical inference and stochastic optimization. In this work, we introduce an efficient adaptive Metropolis-Hastings algorithm to draw samples from generic multi-modal and multi-dimensional target distributions. The proposal density is a mixture of Gaussian densities with all parameters (weights, mean vectors and covariance matrices) updated using all the previously generated samples applying simple recursive rules. Numerical results for the one and two-dimensional cases are provided

    Improved Adaptive Rejection Metropolis Sampling Algorithms

    Full text link
    Markov Chain Monte Carlo (MCMC) methods, such as the Metropolis-Hastings (MH) algorithm, are widely used for Bayesian inference. One of the most important issues for any MCMC method is the convergence of the Markov chain, which depends crucially on a suitable choice of the proposal density. Adaptive Rejection Metropolis Sampling (ARMS) is a well-known MH scheme that generates samples from one-dimensional target densities making use of adaptive piecewise proposals constructed using support points taken from rejected samples. In this work we pinpoint a crucial drawback in the adaptive procedure in ARMS: support points might never be added inside regions where the proposal is below the target. When this happens in many regions it leads to a poor performance of ARMS, with the proposal never converging to the target. In order to overcome this limitation we propose two improved adaptive schemes for constructing the proposal. The first one is a direct modification of the ARMS procedure that incorporates support points inside regions where the proposal is below the target, while satisfying the diminishing adaptation property, one of the required conditions to assure the convergence of the Markov chain. The second one is an adaptive independent MH algorithm with the ability to learn from all previous samples except for the current state of the chain, thus also guaranteeing the convergence to the invariant density. These two new schemes improve the adaptive strategy of ARMS, thus simplifying the complexity in the construction of the proposals. Numerical results show that the new techniques provide better performance w.r.t. the standard ARMS.Comment: Matlab code provided in http://a2rms.sourceforge.net

    Heat asymmetries in nanoscale conductors: The role of decoherence and inelasticity

    Get PDF
    We investigate the heat flow between different terminals in an interacting coherent conductor when inelastic scattering is present. We illustrate our theory with a two-terminal quantum dot setup. Two types of heat asymmetries are investigated: electric asymmetry ΔE\Delta_E, which describes deviations of the heat current in a given contact when voltages are exchanged, and contact asymmetry ΔC\Delta_C, which quantifies the difference between the power measured in two distinct electrodes. In the linear regime, both asymmetries agree and are proportional to the Seebeck coefficient, the latter following at low temperature a Mott-type formula with a dot transmission renormalized by inelasticity. Interestingly, in the nonlinear regime of transport we find ΔE≠ΔC\Delta_E\neq\Delta_C and this asymmetry departure depends on the applied bias configuration. Our results may be important for the recent experiments by Lee et al. [Nature (London) 498, 209 (2013)], where these asymmetries were measured.Comment: 9 pages, 5 figures. Minor changes; published versio

    Latent variable analysis of causal interactions in atrial fibrillation electrograms

    Get PDF
    Multi-channel intracardiac electrocardiograms of atrial fibrillation (AF) patients are acquired at the electrophysiology laboratory in order to guide radiofrequency (RF) ablation surgery. Unfortunately, the success rate of RF ablation is still moderate, since the mechanisms underlying AF initiation and maintenance are still not precisely known. In this paper, we use an advanced machine learning model, the Gaussian process latent force model (GP-LFM), to infer the relationship between the observed signals and the unknown (latent or exogenous) sources causing them. The resulting GP-LFM provides valuable information about signal generation and propagation inside the heart, and can then be used to perform causal analysis. Results on realistic synthetic signals, generated using the FitzHugh-Nagumo model, are used to showcase the potential of the proposed approach
    • …
    corecore